International Journal of Computer Science (IJCS Journal) Published by SK Research Group of Companies (SKRGC). International Conference on Algebra and Discrete Mathematics June 24-26, 2020
[1] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447.
[2] Bijon Biswas, Raibatak Sen Gupta, On the connectedness of square element graphs over arbitrary rings, South East Asian bull Math.,43 (2) (2019), 153–164.
[3] Bijon Biswas, Raibatak Sen Gupta, M.K. Sen, S. Kar, Some properties of square element graphs over semigroups, AKCE International Journal of Graphs and Combinatorics, To Appear.
[4] F. DeMeyer, L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1) (2005) 190–198.
[5] J. Gallian, Contemporary Abstract Algebra, Narosa Publishing House, London, 1999.
[6] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, 1995.
[7] R. Raveendra Prathap and T. Tamizh Chelvam, Complement graph of the square graph offinite abelian groups, Communicated.
[8] R. Sen Gupta and M.K.Sen, The square element graph over a finite commutative ring, South East Asian bull Math.,39 (3) (2015), 407–428.
[9] R. Sen Gupta, M.K. Sen, The square element graph over a ring, Southeast Asian Bull. Math.41 (5) (2017) 663–682.
[10] M. Snowden, Square roots in finite full transformation semigroups, Glasgow Math. J 23 (2)(1982) 137–149
[11] D.B. West, Introduction to Graph Theory, Prentice Hall of India, New Delhi, 2003.
[12] R. J. Wilson, Introduction to Graph Theory, 4th ed, Addison-Wesley Longman Publishing
Co, 1996.