

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1268

RECENT SURVEY OF BIG DATA ANALYTICS FOR

MAPREDUCE FREQUENT ITEM MINING

S.Prakash1, M.Inbavel2, Dr.P.Siva Prakasam3

1Ph.D Scholar, 2Ph.D Scholar , 3Associate Professor,

Department of Computer Science,

Sri Vasavi College , Erode- 6384016 , Tamilnadu, India,

1prakashmcagobi@gmail.com, 2inbavel@gmail.com, 3psperode@ yahoo.com

ABSTRACT- Frequent Itemset Mining (FIM) is

one of the most well known techniques to extract

knowledge from data process. The combinatorial

explosion of FIM methods become even more

problematic when they are applied to Big Data.

Fortunately, present improvements in the field of

parallel programming already provide good tools to

tackle this problem. However, these tools come

with their own technical challenges, e.g. balanced

data distribution and inter-communication costs. In

this paper, we analysis the applicability of FIM

techniques on the MapReduce platform. In this

paper propose a Confabulation Base Parallel FIM

approach called CBP-FIM-DP using the

MapReduce programming model. The above

mentioned FIM mining algorithms extract from

and analyze the historical datasets for decision

making. The purpose of Big data mining is to go

beyond the usual request-response processing,

market basket analysis or uncovering some hidden

relationships and implement very large scale

parallel data mining algorithm. Comparing with the

results derived from mining the conventional

datasets, unveiling the huge volume of

interconnected heterogeneous big data has the

potential to maximize our knowledge in the target

domain. In our experiments we show the scalability

of our methods.

Index Terms—Hadoop, Frequent Item Mining,

MapReduce, Parallel Algorithm, CBP-FIM

I. INTRODUCTION

 Frequent Itemset Mining (FIM) has been an

essential part of data analysis and data mining. FIM

tries to extract information from databases based

on frequently occurring events, i.e., an event, or a

set of events, is interesting if it occurs frequently in

the data, according to a user given minimum

frequency threshold. Many techniques have been

invented to mine databases for frequent events [1],

[1], [3]. These techniques work well in practice on

typical datasets, but they are not suitable for truly

Big Data.

 Applying frequent itemset mining to large

databases is problematic. First of all, very large

databases do not fit into main memory. In such

cases, one solution is to use levelwise

breadth first search based algorithms, such as the

well known Apriori algorithm [4], where frequency

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1269

counting is achieved by reading the dataset over

and over again for each size of

candidate itemsets. Unfortunately, the memory

requirements for handling the complete set of

candidate itemsets blows up fast and renders

Apriori based schemes very inefficient

to use on single machines. Secondly, current

approaches tend to keep the output and runtime

under control by increasing the minimum

frequency threshold, automatically reducing the

number of candidate and frequent itemsets.

However, studies in recommendation systems have

shown that itemsets with lower frequencies are

more interesting [5]. Therefore, we still

see a clear need for methods that can deal with low

frequency thresholds in Big Data.

 Parallel programming is getting utmost

importance to deal with the massive amounts of

data, which is produced and consumed every day.

Parallel programming architectures and supporting

algorithms, can be grouped into two main

categories viz. shared memory and distributed

(share nothing). On shared memory systems, all

processing units can concurrently access a shared

memory area. While, distributed systems are

composed of processors that have their own

internal memories and communicate with each

other by passing messages [6]. It is easier to port

algorithms to shared memory parallelism, but they

are typically not scalable enough [7]. Distributed

systems, allow quasi linear scalability for well

adapted programs. However, it is not always easy

to write or even adapt the programs for distributed

systems.

 Current algorithms like Apriori are good for the

databases that are small in size, but if these

algorithms are executed on very large databases in

parallel on distributed

systems the performance can be improved

significantly. Hadoop is an open source distributed

framework which is designed based on the

Google’s Map-reduce programming

model [8]. Hadoop is capable of analyzing large

amountof data. Hadoop is developed by keeping

most of the things in mind like-large dataset, write

once read many access

models, moving computation is cheaper than

moving data etc. Hadoop has its own file system

called Hadoop Distributed File system (HDFS)

which is capable of running on commodity

hardware with high fault tolerance ability. Data

replication is one of the important features of

HDFS, which ensures data availability and

automatic re-execution on multiple node failure. In

this paper we have proposed algorithm which will

use the power of Hadoop for mining the frequent

Itemset.

 We propose a Confabulation Base Parallel FIM

approach called CBP-FIM-DP using the

MapReduce programming model. The key idea of

CBP-FIM-DP is to group highly relevant

transactions into a data partition for confabulation

theory; thus, the number of redundant transactions

is significantly slashed. Importantly, we show how

to partition and distribute a large dataset across

data nodes of a Hadoop cluster to reduce network

and computing loads induced by making redundant

transactions on remote nodes. CBP-FIM-DP is

conducive to speeding up the performance of

parallel FIM on clusters

 This paper is organized as follows: Section II is

for background and literature survey, Section III

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1270

describes the Problem Statement and application of

Hadoop to solve this

problem and implementation details of the

proposed system whereas section IV has proposed

algorithm and analytical discussion and finally

Section V concludes this paper.

II. LITERATURE SURVEY

 FIM are focused on load balancing data parallel

Frequent Itemset Mining techare equally

partitioned and distributed among computing nodes

of a cluster. More often than not, the lack of

analysis of correlation among data leads to poor

data locality. The absence of data collocation

increases the data shuffling costs and the network

overhead, reducing the effectiveness of data

partitioning. In this study, we show that redundant

transaction transmission and itemset-mining tasks

are likely to be created by inappropriate data

partitioning decisions. As a result, data partitioning

in FIM affects not only network traffic but also

computing loads. Our

evidence shows that data partitioning algorithms

should pay attention to network and computing

loads in addition to the issue of load balancing.

 Parallel Frequent Itemset Mining. Datasets in

modern data mining applications become

excessively large; therefore, improving

performance of FIM is a practical way of

significantly shortening data mining time of the

applications. Unfortunately, sequential FIM

algorithms running on a single machine suffer from

performance deterioration due to limited

computational and storage resources [9][10]. To fill

the deep gap between massive amounts of datasets

and sequential FIM schemes, we are focusing on

parallel FIM algorithms running on clusters.

 The MapReduce Programming Model.

MapReduce - a highly scalable and fault-tolerant

parallel programming model facilitates a

framework for processing large scale datasets

by exploiting parallelisms among data nodes of a

cluster [3][4]. In the realm of big data processing,

MapReduce has been adopted to develop parallel

data mining algorithms, including Frequent Itemset

Mining (e.g., Aprioribased [11][12], FP-Growth-

based [13][14], as well as other classicassociation

rule mining [15]). Hadoop is an open source

implementation of the MapReduce programming

model [16]. In this study, we show that Hadoop

cluster is an ideal computing framework for mining

frequent itemsets over massive and distributed

datasets.

 Data Partitioning in Hadoop Clusters. In

modern distributed systems, execution parallelism

is controlled through data partitioning which in

turn provides the means

necessary to achieve high efficiency and good

scalability of distributed execution in a large-scale

cluster. Thus, efficient performance of data-parallel

computing heavily depends on the effectiveness of

data partitioning. Existing data partitioning

solutions of FiDoop-DP built in Hadoop aim at

balancing computation load by equally distributing

data among nodes. However, the correlation

between the data is often ignored which will lead to

poor data locality, and the data shuffling costs and

the network overhead will increase. We develop

CBP-FIM-DP, a parallel FIM technique, in which a

large transactiondataset is partitioned across a

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1271

Hadoop cluster’s data nodes in a way to improve

data locality.

III. FREQUENT ITEM METHODOLOGY

A. Frequent Itemset Mining

 Frequent Itemset Mining is one of the most

critical and time-consuming tasks in association

rule mining (ARM), an often-used data mining

task, provides a strategic resource

for decision support by extracting the most

important frequent patterns that simultaneously

occur in a large transaction database. A typical

application of ARM is the famous market basket

analysis.

 In FIM, support is a measure defined by users.

An itemset X has support s if s% of transactions

contain the itemset. We denote s = support (X);

the support of the rule X ⇒ Y is support (X∪Y).

Here X and Y are two itemsets, and X∩ Y=∅. The

purpose of FIM is to identify all frequent itemsets

whose support is greater than the minimum

support. The first phase is more challenging and

complicated than the second one. Most prior

studies are primarily focused on the issue of

discovering frequent itemsets.

B. Mapreduce Framework

MapReduce is a popular data processing paradigm

for efficient and fault tolerant workload

distribution in large clusters. A MapReduce

computation has two phases, namely,

the Map phase and the Reduce phase. The Map

phase splits an input data into a large number of

fragments, which are evenly distributed to Map

tasks across a cluster of nodes

to process. Each Map task takes in a key-value pair

and then generates a set of intermediate key-value

pairs. After the MapReduce runtime system groups

and sorts all the intermediate values associated

with the same intermediate key, the runtime system

delivers the intermediate values to

Reduce tasks. Each Reduce task takes in all

intermediate pairs associated with a particular key

and emits a final set of key-value pairs.

MapReduce applies the main idea of

moving computation towards data, scheduling map

tasks to the closest nodes where the input data is

stored in order to maximize data locality. Hadoop

is one of the most popular MapReduce

implementations. Both input and output pairs of a

MapReduce application are managed by an

underlying Hadoop distributed file system (HDFS

[17]). At the heart of HDFS is a single NameNode

a master server managing the file system

namespace and regulates file accesses.

 The Hadoop runtime system establishes two

processes called JobTracker and TaskTracker. Job-

Tracker is responsible for assigningand scheduling

tasks; each askTracker handles mappersor

reducers assigned by JobTracker. When Hadoop

exhibits an overwhelming development

momentum, a new MapReduce programming

model Spark attracts researchers’ attention [18].

The main abstraction in Spark is a resilient

distributed dataset (RDD), which offers good fault

tolerance and allows jobs to perform computations

in memory on large clusters. Thus, Spark becomes

an attractive programming model to iterative

MapReduce algorithms. We decide to develop

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1272

FiDoop-DP on Hadoop clusters; in a future study,

we plan to extend FiDoop-DP toSpark to gain

further performance improvement.

C. Parallel FP-Growth Algorithm

 In this existing study, we focus on a FP-Growth

algorithm called Parallel FP. FP-Growth efficiently

discovers frequent itemsets by constructing and

mining a compressed data structure (i.e., FP-tree)

rather than an entire database. PFP was designed to

address the synchronization issues by partitioning

transaction database into independent partitions,

because it is guaranteed that each partition contains

all the data relevant to the features (or items) of

that group. Given a transaction database DB,

Fig.3.1 depicts the process flow of Parallel FP-

Growth implemented in Mahout. The parallel

algorithm consists of four steps, three of whichare

MapReduce jobs.

Fig 3.1 Map Reduces

 Step 1. Parallel Counting: The first MapReduce

job counts the support values of all items residing

in the database to discover all frequent items or

frequent 1-itemsets in

parallel. It is worth noting that this step simply

scans the database once.

 Step 2. Sorting frequent 1-itemsets to F List: The

second step sorts these frequent 1-itemsets in a

decreasing order of frequency; the sorted frequent

1-itemsets are cached in a

list named F List. Step 2 is a non-MapReduce

process due to its simplicity as well as the

centralized control.

 Step 3. Parallel FP-Growth: This is a core step of

Pfp, where the map stage and reduce stage perform

the following two important functions. Mapper -

Grouping items and generating group-dependent

transactions and Reducer - FP-Growth on group-

dependent partitions. local FPGrowth is conducted

to generate local frequent itemsets. Each reducer

conducts local FPGrowth by processing one or

more group-dependent partition one by one, and

discovered patterns are output in the final.

Step 4. Aggregating: The last MapReduce job

produces final results by aggregating the output

generated in Step 3.

IV CONFABULATION BASED FREQUENT

ITEM METHODOLOGY

A. Frequent Mining

 A major choice in association mining is how the

interestingness of an association should be

measured. The lift measure has only recently

emerged on the scene. Historically, the dominant

approach has been support/confidence. In this

approach, cells with highest prediction confidence

p(i|j) subject to having support above a threshold:

p(i,j) > t.

 This measure of association arose mainly for

computational reasons, since it allows us to restrict

our attention to the largest counts, which are easy

to identify. (This is not possible with lift, since lift

can be high even if the actual count is small, as

long as the expected count is even smaller.)

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1273

For example, the information that customers who

purchase computers also tend to buy financial

management software at the same time is

represented in association Rule below.

computer ->financial management software

[support = 2%; confidence = 60%]

Rule support and confidence are two measures of

rule interestingness they respectively reflect the

usefulness and certainty of discovered rules. A

support of 2% for association Rule means that 2%

of all the transactions under analysis show that

computer and financial management software are

purchased together. A confidence of 60% means

that 60% of the customers purchased a computer

also bought the software. Typically, association

rules are considered interesting if they satisfy both

a minimum support threshold and a minimum

confidence threshold. Such thresholds can be set by

users or domain experts

B. DIC Algorithm

It is an extension to Apriori algorithm used to

reduce number of scans on the dataset.

 Alternative to Apriori Itemset Generation

 Itemsets are dynamically added and deleted

as transactions are read

 Relies on the fact that for an itemset to be

frequent, all of its subsets must also be frequent, so

we only examine those itemsets whose subsets are

all frequent.

A dynamic itemset counting technique was

proposed in which the database is partitioned into

blocks marked by start points. In this variation,

new candidate itemsets can be added at any start

point, unlike in Apriori, which determines new

candidate itemsets only immediately prior to each

complete database scan. The technique is dynamic

in that it estimates the support of all of the itemsets

that have been counted so far, adding new

candidate itemsets if all of their subsets are

estimated to be frequent.

The resulting algorithm requires two database

scans Itemsets are marked in four different ways as

they are counted:

 Solid box: confirmed frequent itemset - an

itemset the finished counting and exceeds the

support threshold minsupp

 Solid circle: confirmed infrequent itemset –

the finished counting and it is below minsupp

 Dashed box: suspected frequent itemset - an

itemset we are still counting that exceeds minsupp

 Dashed circle: suspected infrequent itemset

- an itemset are still counting that is below minsupp

 Algorithm Step

 The empty itemset is marked with solid

box. All the 1-itemsets are marked with dashed

circles. All other itemsets are unmarked.

 Read M transactions. We experiment with

values of M ranging from 100 to 10000. For each

transaction increment the respective counters for

the itemsets marked with dashes.

 If a dashed circle has a count that exceeds

the support threshold, turn it into a dashed square.

If any immediate superset of it has all of its subsets

as solid or a dashed square, add new counter for it

and make it a dashed circle.

 If a dashed itemset has been counted

through all the transactions, make it solid and stop

counting it.

 If the end of the transaction file, rewind to

the beginning.

 If any dashed itemsets remain, go to step 2.

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1274

After just few passes over the data (usually less

than two for small values of M) it finishes counting

all the itemsets. Ideally we want M to be as small

as possible so we can start counting itemsets very

early in step 3.

There are a number of benefits to DIC. The main

one is performance. If the data is fairly

homogeneous throughout the file and the interval

M is reasonably small, this algorithm generally

makes on the order of two passes. But if the data is

not fairly homogeneous, we can run through if in a

random order.

C. Fast-Update DIC

 There are many algorithms available for

association rule mining. Apriori is the basic

algorithm for mining association rules. The

Dynamic Itemset Counting (DIC) is an

improvement of Apriori.

 The FUP (Fast UPdate) algorithm was

introduced to deal with insertion of new transaction

data. The problem with incremental updating is to

find the large itemsets for a database D union db,

where D and db are sets of old and inserted

transactions respectively. The main assumption is

that the set of large itemsets L for D is already

known.

 FUP is based on the Apriori algorithm. For each

iteration, only db is scanned using the known set of

large itemsets of size k, Lk, from D as the

candidates. This is used to remove the candidates

which are no longer large in the larger database, D

union db. Simultaneously a set of new candidates is

determined. Since the database may change in

different ways, FUP can only handle insertion of

new transaction data.

 FUP2 can efficiently update discovered

association rules with insertion of some new

transactions and deletion of some obsolete

transactions. Both FUP and FUP2 have

disadvantages; they require space to store the large

itemsets and rules of the original database. In FUP2

the deleted transaction must also be retained and

FUP2 is efficient only when the database does not

change much.

 Another approach to maintain association rules is

based on the idea of sampling. The algorithm uses

sampling to estimate the upper bound on the

difference between the old and new sets of

association rules. Small changes to the association

rule set are ignored. Motivated by the high

number of database scans required by Apriori

based algorithms, Partition algorithm was

proposed.

 In most cases, Partition algorithm requires two

complete data scan to mine frequent itemsets. The

Partition algorithm divides the dataset into many

subsets and each subset can be fitted into the main

memory. The main idea of Partition algorithm is

that a frequent itemset must be frequent in at least

one of the subsets.

 During the first data scan, Partition algorithm

generates local frequent itemsets for each partition.

Since the whole partition can be fitted into the

main memory, the complete local frequent itemsets

can be mined without further disk access. The local

frequent itemsets are added to the global candidate

frequent itemsets.

 In the second data scan, false candidates are

removed from the global candidate frequent

itemsets. In a special case where each subset

contains identical local frequent itemsets, Partition

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1275

algorithm can mine all frequent itemsets with a

single data scan. However, when the data is

distributed unevenly across different partitions,

Partition algorithm may generate a lot of false

candidates from a small number of partitions

D.CBP-FIM-DP Algorithm

 CBP-FIM-DP (Confabulation Base Parallel FIM

approach called) is about the mining of association

rules from the fuzzy dataset which is now the

combination of original and fuzzy Hadoop

database. The system will check for the itemsets

whether they are large in original Hadoop dataset

or in fuzzy Hadoop dataset or in both. For the

itemsets from the Hadoop dataset, the system will

calculate the support threshold, and the itemsets

having the support more than the support threshold

will be considered as frequent itemsets.

 The proposed system uses the DIC technique on

the fuzzy itemset Hadoop database. The support

threshold for the original Hadoop database has

been already calculated. After the DIC is applied

the new steps are added for calculation of frequent

itemsets. If some itemset is not frequent in original

Hadoop database, but when some transactions

items are added to the original Hadoop database

there may be possibility that the itemset may

become frequent, which is not frequent in original

Hadoop database. So those itemsets will be

checked when new set of transactions items are

added to the original dataset. Finally this system

will find the frequent itemsets which is having the

support value greater than minimum support

threshold from the updated Hadoop dataset.

Fig 4.1 CBP-FIM-DP Framework

/* CBP-FIM-DP Algorithm */

Input:

transaction_items: transaction items.

count_items: limit the items scan and finding the

frequent items.

temp_items : maintains the temporary frequent or

non frequent items.

classify_items: classify the transaction items.

fuzzy_items: If select already set the frequent items

or non frequent items.

dynamic_items: increment frequent items.

Output:

association_items: result in frequent item sets

(finding minimum support items & update

database)

Notations:

ts: transaction items

cu: count the limit items (cuT, cuF, cuD)

temp: temporary frequent or non frequent items.

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1276

cs: classify_itemset schema (Classify transaction

items)

fs: fuzzy_itemset schema (Classify already set the

frequent or non frequent items)

ds: dynamic_itemset schema (finding the increment

frequent itemset between fs and cs)

aso: association_itemset schema (finding the

frequent itemset in ds)

Method:

 Initially state (cs, fs and ds is create and empty the

schema)

 Each step finding the frequent items and frequent

count (cs, fs, and ds is drop the schema)

Step1: Set the cuT and partition of cuT items in ts.

Step2: Scan and partition the ts and store the cs.

Step3: Set the cuT and partition of cuF items and

store in fs.

Step4: Finding the frequent in itemset until ts items

between fs and cs.

 If fs is set frequent items means:

 If (items is frequent) means store aso

 Else maintains non frequent items

in temp

 If fs is set non frequent items means:

 If (items is non frequent) means store

temp

 Else maintains frequent items in

aso

 Return frequent items and frequent count

Step5: The temp item partitions of cuD set and

store the ds.

Step 6: Find the increment frequent itemset

between cuD to ds.

 If ds is set frequent items means:

 If (items is frequent) means store aso

 Else maintains non frequent items in

temp

 If ds is set non frequent items means:

 If (items is non frequent) means store

temp

 Else maintains frequent items in aso

 Return frequent items and frequent count

Step 7: Repeat the process finding frequent items

and its counts.

Step 8: Drop the schema fs, cs and ds is each

finding frequent items.

Step 9: Finding the association rule mining in

minimum support, and confidence following state.

 Support = No. of. Count in Frequent Items /

No. of. Total Transaction >= min_support

[i.e. s’ Support(A B) = P(AUB) >=

min_support]

 Confidences = No. of. Count in Frequent

Items / No. of. Transaction Items >= min_conf

[i.e. s’ confidences(A B) = P(B/A) >= min_conf]

 Where min_support: The minimum support

threshold.

 min_conf : The minimum

confidences threshold.

Step 10: Update the original Hadoop database is

new frequent min_support itemset.

Step 11: Maintains non frequent items future refer

the next frequent items.

F. Advantages Of CBP-FIM-DP Algorithm

 Compared to Apriori algorithm and DIC

algorithm is less number of update hadoop datasets

in database.

 Scan the Hadoop database easily, because

reduces the frequent items and its find previous

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1277

frequent items and applied the association mining

rule algorithm.

 Compare the previous algorithm running

speed and time is few reduce in this algorithm.

 Deep level association rule should be

applied in this algorithm.

 Effective algorithm and look for a balance

between disclosure cost, computation cost and

communication cost.

 Efficient and scalable methods for

association rule mining should be developed in this

algorithm.

V. EXPERIMENTAL RESULTS

The below Fig 5.1 shows the frequent graph

mining for the performance analysis this

performance analysis is calculated using frequently

searched node sub frequent graph node count and

the average mapping frequent sub graph node that

is represented as the percentage level.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11

Frequently Searched

Mapping Sub Frequent
Graph Node Count (n)

Average of Mapping
Frequent Sub graph Node
[%]

Fig 5.1 Frequent Sub-Graph Mining Performances

Analysis

The below Fig 5.2 shows the frequent sub graph

node performance analysis that is which node

participation in the network is high the average of

the mapping is also done. The sub frequent graph

node count is been mentioned using the n count

value.

0 200 400 600 800

1

3

5

7

9

11

Average of Mapping
Frequent Sub graph Node
[%]

Mapping Sub Frequent
Graph Node Count (n)

Fig 5.2 Frequent Sub-Graph Mining Performances

Analysis(Frequent Sub Graph Node)

VI. CONCLUSION

In this paper , present the use of an association

rule mining driven Hadoop application is to

manage mapreduces dataset that provide frequent

items with report regarding prediction of product

purchase or sales trends and customer behavior.

Our goal of the research is to find a new

Confabulation based frequent items for finding the

rule of the Hadoop dataset, which outperforms in

terms of running time, number of database scan,

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1278

memory consumption and the interestingness of the

rules over the classical CBP-FIM-DP algorithms.

Hadoop dataset is one of most important part of

research process. The main goal of super market

industry (Hadoop) sales of frequent items

maintains and increasing profit. So there are strong

association rule finding frequent items must the

data mining works. In this algorithm proposed is

some techniques added the future analysis of

mining frequent items. Because select the fuzzy

items frequent optimizing select and compare

transactions items, so strong fuzzy hadoop items

created techniques applied our proposed algorithm

and update the original hadoop database increasing

times, access the speed of processors

implementation of our proposed algorithms.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms

for mining association rules in large

databases. In Proc. VLDB, pages 487–499,

1994.

[2] R. J. Bayardo, Jr. Efficiently mining long

patterns from databases. SIGMOD Rec. ,

pages 85–93, 1998.

[3] M. Zaki, S. Parthasarathy, M. Ogihara, and

W. Li. Parallel algorithms

for discovery of association rules. Data Min.

and Knowl. Disc. , pages 343–373, 1997.

[4] R. Agrawal and J. Shafer. Parallel mining of

association rules. IEEE

Trans. Knowl. Data Eng. , pages 962–969,

1996

[5] B. Mobasher, H. Dai, T. Luo, and M.

Nakagawa. Effective personalization based

on association rule discovery from web usage

data. In Proc. WIDM, pages 9–15. ACM,

2001.

[6] J. Ekanayake, H. Li, B. Zhang, T.

Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.

Twister: A runtime for iterative MapReduce.

In Proc. HPDC, pages 810–818. ACM, 2010.

[7] G. A. Andrews. Foundations of

Multithreaded, Parallel, and Distributed

Programming. Addison-Wesley, 2000.

[8] Z. Zheng, R. Kohavi, and L. Mason. Real

world performance of association rule

algorithms. In F. Provost and R. Srikant,

editors, Proceedings of the Seventh ACM

SIGKDD International Conference

on Knowledge Discovery and Data Mining,

pages 401 –406. ACM Press, 2001.

[9] M. J. Zaki, “Parallel and distributed

association mining: A survey,” Concurrency,

IEEE, vol. 7, no. 4, pp. 14–25, 1999.

[10] I. Pramudiono and M. Kitsuregawa, “Fp-tax:

Tree structure based generalized association

rule mining,” in Proceedings of the 9th

ACMSIGMOD workshop on Research issues

in data mining and knowledge

discovery. ACM, 2004, pp. 60–63

[11] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh,

“Apriori-based frequent itemset mining

algorithms on mapreduce,” in Proceedings of

the 6th International Conference on

Ubiquitous Information Management and

Communication, ser. ICUIMC ’12. New

York, NY, USA: ACM, 2012, pp. 76:1–76:8.

[12] X. Lin, “Mr-apriori: Association rules

algorithm based on mapreduce,” in Software

Engineering and Service Science (ICSESS),

http://www.ijcsjournal.com Volume 5, Issue 1, No 10, 2017 ISSN: 2348-6600

Reference ID: IJCS-205 PAGE NO: 1268-1279

Sri Vasavi College, Erode Self-Finance Wing 3rd
 February 2017

 National Conference on Computer and Communication NCCC’17

http://www.srivasavi.ac.in/ nccc2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) &

Department of Computer Science, Sri Vasavi College, Erode, Self-Finance Wing, Erode, Tamil Nadu, INDIA

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1279

2014 5
th
 IEEE International Conference on.

IEEE, 2014, pp. 141–144.

[13] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang,

and S. Feng, “Balanced parallel fp-growth

with mapreduce,” in Information Computing

and Telecommunications (YC-ICT), 2010

IEEE Youth Conference on. IEEE,

2010, pp. 243–246.

[14] S. Hong, Z. Huaxuan, C. Shiping, and H.

Chunyan, “The study of improved fp-growth

algorithm in mapreduce,” in 1st

InternationalWorkshop on Cloud Computing

and Information Security. Atlantis

Press,2013.

[15] M. Riondato, J. A. DeBrabant, R. Fonseca,

and E. Upfal, “Parma: a parallel randomized

algorithm for approximate association

rulesmining in mapreduce,” in Proceedings of

the 21st ACM internationalconference on

Information and knowledge management.

ACM, 2012, pp.85–94.

[16] C. Lam, Hadoop in action. Manning

Publications Co., 2010

[17] H. Li, Y. Wang, D. Zhang, M. Zhang, and E.

Y. Chang, “Pfp: parallel fp-growth for query

recommendation,” in Proceedings of the 2008

ACMconference on Recommender systems.

ACM, 2008, pp. 107–114.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin,

S. Shenker, and I. Stoica,“Spark: cluster

computing with working sets,” in

Proceedings of the2nd USENIX conference

on Hot topics in cloud computing, vol. 10,

2010, p. 10.

