

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1641

A BACKTRACKING AND BRANCH & BOUND ALGORITHM

USING KNAPSACK PROBLEM

Dr.V.Selvi#1 Assistant Professor

Department of Computer Science

Mother Teresa Women’s University

Kodaikanal-624101.

1selvigiri.s@gmail.com

G.Sadhana*2 M.phil Research scholar

#Department of Computer Science

Mother Teresa Women’s University,

Kodaikanal- 624101.

1selvigiri.s@gmail.com

Abstract - This paper describes what is termed as

backtracking using maze problem and what is

termed as branch & bound using Hamiltonian

cycle. A backtracking algorithm is a recursive

method of building up feasible solutions to a

combinatorial optimization problem one step at a

time. A backtracking algorithm is an exhaustive

search, that is, all feasible solutions are considered

and it will thus always find the optimal solution. It

is a generalized of the ordinary maze problem to

find a path from start from finish. One or more

sequences of choices may lead to a solution. Many

of the maze problem can be solved with

backtracking. Branch and bound (BB, B&B, or

BnB) is an algorithm design paradigm for discrete

and combinatorial optimization problems, as well

as mathematical optimization. A branch-and-bound

algorithm consists of a systematic enumeration.

The algorithm explores branches of this tree, which

represent subsets of the solution set. Using a

Hamiltonian cycle a path which passes once and

exactly once through every vertex of G (G can be

digraph).

Keywords--Backtracking, branch&bound, maze,

Hamiltonian, optimization.

I. INTRODUCTION

A backtracking algorithm is a recursive method

of building up feasible solutions to a combinatorial

optimization problem one step at a time. A

backtracking algorithm is an exhaustive search,

that is, all feasible solutions are considered and it

will thus always find the optimal solution. Pruning

methods can be used to avoid considering some

feasible solutions that are not optimal. To illustrate

the basic principles of backtracking, we consider

the Knapsack problem. Recall that a problem

instance consists of a list of profits, P =[p1,...,pn];

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Discrete_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1642

a list of weights, W=[w1,...,wn]; and a capacity, M.

These are all positive integers. It is required to find

the maximum value of pixi subject to wixi ≤ M and

xi ∈{ 0,1} for all i. An n-tuple[x1,x2,...,xn] of 0’s

and 1’s is a feasible solution ifwixi ≤ M.One naive

way to solve this problem is to try all 2n possible

n-tuples of 0’s and 1’s. We can build up an n-tuple

one coordinate at a time by first choosing a value

for x1, then choosing a value for x2, etc.

II. PROPOSED APPROACH

A. Backtracking Algorithm

A backtracking algorithm is an exhaustive search,

that is, all feasible solutions are considered and it

will thus always find the optimal solution.

Backtracking provides a simple method for

generating all possible n-tuples. After each n-tuple

is generated it is checked for feasibility. If it is

feasible, then its profit is compared to the current

best solution found to that point. The current best

solution is updated whenever a better feasible

solution is found. We will denote by X =[x1,...,xn]

the current n-tuple being constructed, and Cur P

will denote its

1.Algorithm:

Global X, Opt X, Opt P

If l=n+1

Then

{

If ∑n i=1 wixi ≤M

Then

{

Cur P ∑n i=1 pixi

If cur P > Opt P

{

Opt P Cur P

Opt X [x1,..............,xn]

Else

{

xl1

Knapsack1 (l+1)

Xl0

Knapsack1 (l+1)

}

}

}

}

Example:

2. Solving a Maze:

Given a maze, find a path from start to finish .At

each intersection, you have to decide between three

or fewer choices you don’t have enough

information to choose correctly. Each choice leads

to another set of choices. One or more sequences of

choices may (or may not) lead to a solution. Many

types of maze problem can be solved with

backtracking

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1643

• The bicycle lock problem:

• Consider a lock with N switches, each of

which can be either 0 or 1.

• We know that the combination that opens

the lock should at least N/2] 1’s.

• Note: The total number of combination is

2N

• The solution space can be modelled by a

tree

For some problems, the only way to solve is to

check all possibilities.

 • Backtracking is a systematic way to go through

all the possible configurations of a search space.

 • We assume our solution is a vector (a(1),a(2),

 • We assume our solution is a vector (a(1),a(2),

a(3), ..a(n)) where each element a(i) is selected

from a finite ordered set S.

3. General Algorithm:

Procedure backtrack()

/* X is the solution vector */

Integer k;

Begin

K=1;

Compute sk; /* Compute the possible solution

values fork=1 */

While k>0 do

While sk<>Φ do

X[k]=an element of sk;

Sk=Sk-{x[k]};

If B(x[1],........x[i],........x[k])=True

Then print the solution vector x;

Else begin

 K=k+1;

 Compute Sk;

End;

End while;

 K=k-1;

End while

End;

4. Recursive Solution:

Backtracking is easily implemented with recursion

because The run-time stack takes care of keeping

track of the choices that got us to a given point of

the choices that got us to a given point. upon

failure we can get to the previous choice simply by

returning a failure code from the recursive call.

Procedure back_recursive (k)

Begin

 For each x[k] in Sk do

 If B (x[1],......,x[i],.........,x[k]=True

 Print the solution vector x;

Else begin

 Compute Sk;

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1644

 Back_recursive (k+1);

End if;

End for;

End

B. Branch and Bound Algorithm

Branch and bound (BB, B&B, or BnB) is an

algorithm design paradigm for discrete and

combinatorial optimization problems, as well as

mathematical optimization. A branch-and-bound

algorithm consists of a systematic enumeration of

candidate solutions by means of state space search:

the set of candidate solutions is thought of as

forming a rooted tree with the full set at the root.

The algorithm explores branches of this tree, which

represent subsets of the solution set. Before

enumerating the candidate solutions of a branch,

the branch is checked against upper and lower

estimated bounds on the optimal solution, and is

discarded if it cannot produce a better solution than

the best one found so far by the algorithm.[3]

Example

1. Hamiltonian Cycle:

Hamiltonian cycle (HC): is a cycle which passes

once and exactly once through every vertex of G

and returns to starting position[6]

Hamiltonian path: is a path which passes once and

exactly once through every vertex of G (G can be

digraph).

A graph is Hamiltonian if a Hamiltonian cycle

(HC) exists

2. Hamiltonian Circuit:

 Graph G1 contain hamiltonian cycle and

path are 1,2,8,7,6,5,3,1

 Graph G2contain no hamiltonian cycle.

 Here solution vector (x1,x2,...,xn) idefined

so that xi represent the I visited vertex of proposed

cycle.

 The algorithm is started by

initializingadjacency matrix G[1:n,1:n,then setting

x[2:n] to zero & x[1] to 1, then

executingHamiltonian(2)

Algorithm

Algorithm Nextvalue(k)

{

repeat

{

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1645

x[k] := (x [k] +1 mod (n +1)

//next vertex

 If (x[k] = 0) then return

 If G[x[k-1], x[k] ≠ 0) then

 {

//Is there an edge?

for j =1 to k-1 do if (s[j] = x[k]) then break;

//check distinctness

 If (j= k) then//if true then vertex is distinct

 If ((k< n) or ((k =n) and G [x[n] , x[1] ≠ 0))

then return

}

} until (false) ;

}

3. Hamiltonian Algorithm

Hamiltonian path: is a path which passes once and

exactly once through every vertex[5]

Algorithm Hamiltonian (k)

{

repeat

{

//generate values for x[k]

Nextvalue (k);

//assign a legal next value to x[k]

if (x[k] = 0) then return

if (k = n) then write (x[1:n]);

else

Hamiltonian(k + 1);

} until(false);

}

Knapsack Problem

Here instead of considering no. of items, we

consider that we have n types of items & that

proper no. of items of each type is available. This

0/1 knapsack problem

algorithmBoundKnapsack(T,W)

{

b=0

for i= 1 to n do

if(w

i

≤W) then

{

b=max(b, pi+ BoundKnapsack(I,W-wi))

}

return b

}

T=<T1,T2,T3>

w=<2,3,4>

p=<3,4,5>

W=5

http://www.ijcsjournal.com Volume 5, Issue 1, No 21, 2017 ISSN: 2348-6600

Reference ID: IJCS-257 PAGE NO: 1641-1646

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1646

For example,, if we once visit node(2,3; 7,5) then

next time we do not visit node(3,2;7,5). The first

node visited is (2;3,20 the next is (2,3;7,5). It can

be seen that as each new node is visited the partial

solution is also extended. After visiting theses two

nodes the dead end comes as node(2,3;7,5)has no

unvisited successor, since adding more items to the

partial solution violates the knapsack capacity

constraint we memorize it. This is optimal solution

for our problem with maximum capacity 7 and T1

& T2 are include into the knapsack[6]

III Conclusion

Both Backtracking and Branch&bound algorithm

try to find out the optimal solution. In both

algorithm an optimal solution to the problem

contains within it optimal solutions. We have

shown how the Hamiltonian Cycle problem is

equivalent to both solving a system. So In future

we need to develop algorithm that trade-off

between parallelism and expenses.

REFERENCES

[1] T.H.Cormen, C.E.Leiserson and R.L.Rivest,

Introduction to algorithms, I ITPress, Cambridge

MA,1996.

[2] Levitin, Anany. The Design and Analysis of

Algorithms. New Jersey: Pearson Education Inc.,

2003.

[3] Different Approaches to Solve the 0/1

Knapsack Problem. Maya Hristakeva,

DiptiShrestha; Simpson Colleges

[4] S. Dasgupta, C. H. Papadimitriou and U. V.

Vazirani.Algorithms

[5]https://en.wikipedia.org/wiki/Hamiltonian_path

_problem

[6]https://en.wikipedia.org/wiki/Maze_solving_alg

orithm

