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SOME PROPERTIES OF THE SQUARE GRAPH OF FINITE

ABELIAN GROUPS

R. RAVEENDRA PRATHAP1, T. TAMIZH CHELVAM2

Abstract. Let G be a finite abelian group. The square graph of G is the
simple undirected graph with vertex set G in which two distinct vertices x and

y are adjacent if and only if x + y = 2t for some 2t ̸= 0 and t ∈ G where 0
is the identity of the group. In this paper, we discuss the diameter and the
girth of the graph Γsq(G). Using these, we obtain the independence number

and the clique number of Γsq(G).

1. Introduction

Throughout this paper R denoted a commutative ring with identity and R∗ =
R\{0}. The definition of Cayley graph was introduced by Arthur Cayley in 1878 to
explain the concept of abstract groups which are described by a set of generators.
There are several other graph constructions from finite groups and rings [1, 2].
The set Sq(R) of squares of R (elements of form x2 for some x ∈ R) is a very
interesting subset from algebraic point of view. Sen Gupta and Sen [8] introduced
the square element graph of a finite commutative ring and studied its properties.
The square element graph Sq(R) over R is the simple undirected graph with vertex
set V = R∗ and two vertices a, b are adjacent if and only if a + b = x2 for some
x ∈ R∗. Sen Gupta and Sen [9] further generalized the square element graph Sq(R)
by defining it over any ring R with unity. Snowden [10] studied this graph for finite
full transformation semigroups. Let G be a finite abelian group.The square element
graph over G, Γsq(G), is the simple undirected graph with vertex set G in which
two distinct vertices x and y are adjacent if and only if x+ y = 2t for some 2t ̸= 0
and t ∈ G where 0 is the identity of the group. In this paper, we concentrate on
the square element graph Γsq(G) of a finite group G. In section 2 of this paper, we
obtain the diameter and the girth of Γsq(G). We give a condition for Γsq(G) to
be self-centered. Also, we obtain the independence number, the clique number and
the chromatic number of Γsq(G).

2. Preliminaries

First let us recollect some basic definitions of graph theory which are essential
for this paper. By a graph Γ = (V,E), we mean Γ is a finite graph with vertex set
V and edge set E. A graph Γ is said to be complete if each pair of distinct vertices
is joined by an edge. We use Kn to denote the complete graph with n vertices. A
graph Γ is said to be connected if every distinct pair of vertices in Γ has a path.
For a vertex v ∈ V (G), N(x) is the set of all vertices in G which are adjacent to
v and N [x] = N(x) ∪ {x}. The distance d(u, v) between the vertices u and v in
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Γ is the length of the shortest path between u and v. If no path exists between u

and v in Γ, then d(a, b) = ∞. For a vertex v ∈ V (Γ), the eccentricity of v is the
maximum distance from v to any vertex in Γ. That is, e(v) = max{d(v, w) : w ∈
V (Γ)}. The radius of Γ is the minimum eccentricity among the vertices of Γ. i.e.,
radius(Γ) = min{e(v) : v ∈ V (G)}. The diameter of Γ is the maximum eccentricity
among the vertices of Γ. i.e., diameter(Γ) = max{e(v) : v ∈ V (G)}. The girth of
Γ is the length of a shortest cycle in Γ and is denoted by gr(Γ). The degree of a
vertex v is the number of the edges in Γ which are incident with v. A clique of Γ is
a maximal complete subgraph of Γ and the number of vertices in the largest clique
of Γ is called the clique number of Γ and is denoted by ω(Γ). An independent set is
a set of vertices in a graph, in which no two vertices are adjacent and cardinality
of maximal independent set is called the independent number. [11, 12].

Let G be a finite abelian group and |G| = 2α × pα1

1 × . . .× pαr
r where 2 and p′is

are distinct primes and α, αi ∈ Z
+∪{0} for 1 ≤ i ≤ r. Then G is the direct product

of finite cyclic groups. i.e., G ∼= Z2α ×
r
∏

i=1

Zp
αi
i
. If |G| is divisible by 2 and α =

m1+· · ·+mk, for α,m1, . . .mk ∈ Z
+, then we have G ∼=

k
∏

i=1

Z2mi ×Zpα1

1 ×. . .×Zpαr
r .

Remark 2.1. For a finite abelian group G, let Sq(G) = {2t| t ∈ G} ⊆ G and
Od(G) = G \Sq(G). Note that two distinct vertices x and y are adjacent in Γsq(G)
if and only if x+ y ∈ Sq(G) \ {0}.

Remark 2.2. (1). If |G| is not divisible by 2, then G = Sq(G) and Od(G) = ϕ.

(2). Assume that |G| is divisible by 2 and so α ≥ 1. Consider a partition
P (α) = m1 + · · · +mk of α. Here k ≥ 1. Now, we respect to a partition of α, one
can associate 2k, k-tuples of 0’s and 1’s. For a k-tuple, ℓ = (a1, a2, . . . , ak), let

Xℓ =
k
∏

i=1

Hi × Zpα1

1 × . . .× Zpαr
r . where Hi =

{

Sq(Z2mi ) if ai = 0;

Od(Z2mi ) if ai = 1.

(3). One can check that in either case, Sq(G) = X(0,0,...,0) = X1, Od(G) =
2k
∪

i=2

Xi

and |Xℓ| =
|G|
2k

, For ℓ, 1 ≤ ℓ ≤ 2k.

3. Basic properties of Γsq(G)

In this section, we list out some basic properties of the square graph Γsq(G) of
finite abelian group G. In the following theorem, we show that Γsq(G) is connected
and obtain diameter and girth of the graph Γsq(G).

Theorem 3.1. [3] Let G be a finite abelian group. Then the following are equiva-

lent:

(1) Γsq(G) is connected.

(2) All elements of G are squares.

(3) |G| is odd.

In this following, we obtain the diameter and girth of Γsq(G) where |G| is not

divisible by 2.

Theorem 3.2. Let G be a finite abelian group and |G| is not divisible by 2. Then
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(1) diam(Γsq(G)) = 2

(2) gr(Γsq(G)) = 3.

Proof. Assume that |G| is not divisible by 2. As observed in Remark 2.2(1), we
have G = Sq(G).

(1). If 0 ̸= x ∈ G is an element in G. Then there exists an element y ∈ G such
that x ̸= y and x + y = 0. Thus x is not adjacent to y but there exists a path
x− 0− y of length two in G. Thus diam(Γsq(G)) = 2.

(2). If |G| is not divisible by 2, then |G| ≥ 3. Let 0, x, y ∈ G with x + y ̸= 0.
Then 0− x− y − 0 is a cycle of length 3 in G and so gr(Γapq(G)) = 3. �

Lemma 3.3. [7] Let G be a finite abelian group, |G| = 2α × pα1

1 × . . .× pαr
r where

2 and p′is are distinct primes and α, αi ∈ Z
+ ∪ {0} for 1 ≤ i ≤ r.. If x ∈ Xi and

y ∈ Xj for i ̸= j, then x is not adjacent to y in Γsq(G).

In the following theorem, we obtain the independence number of Γsq(G).

Theorem 3.4. Let G be a finite abelian group, |G| = 2α × pα1

1 × . . . × pαr
r where

2 and p′is are distinct primes and α, αi ∈ Z
+ ∪ {0} for 1 ≤ i ≤ r and G ∼=

k
∏

i=1

Z2mi ×Zp1
× . . .×Zpr

, α ∈ Z
+ and

k
∑

i=1

mi = α. Then the independence number

β(Γsq(G)) =



















2 if |G| is odd;

2k if G ∼= Z
k
2 and G ∼= Z

k−1
2 × Z4;

2k + 1 if G ∼= Z
k
4 ;

2k+1 otherwise;

Proof. Case 1. If |G| is odd, then G = Od(G)and so deg(0) = |G| − 1 and
deg(x) = |G| − 2 for all x ∈ G \ {0}. Hence S = {x,−x} is a maximal independent
set and so β(Γsq(G)) = 2.

Case 2. If G ∼= Z
k
2 , then Sq(G) = {0}k and so Γsq(G) ∼=

∪

|G|

K1. Hence S = G

is a maximal independent set and so β(Γsq(G)) = 2k.

If G ∼= Z
k−1
2 ×Z4,then |G| = 2k+1. Here we have |Xℓ| = 2 for 1 ≤ ℓ ≤ 2k. Hence

S = Z2 × . . .× Z2 × {1, 3} is a maximal independent set and so β(Γsq(G)) = 2k.
Case 3. If G ∼= Z

k
4 , then |G| = 22k. Let X1 = X(0,0,...,0) = Sq(G). By Re-

mark 2.2, for 1 ≤ i ̸= j ≤ 2k, Xi ∩Xj = ∅ and |Xℓ| =
|G|
2k

, for ℓ, 2 ≤ ℓ ≤ 2k . Then

⟨X1⟩ = K |G|

2k

in Γsq(G) and so for x ∈ Xℓ, then deg(x) = |G|
2k

− 2 for ℓ, 2 ≤ ℓ ≤ 2k.

Hence S = {0}
2k
∪

ℓ=2

{x,−x} is a maximal independent set and so β(Γsq(G)) = 2k+1.

Case 4. For the remaining cases, |Xℓ| ≥ 3 for ℓ, 2 ≤ ℓ ≤ 2k. For each for
ℓ, 2 ≤ ℓ ≤ 2k, Xℓ contains an element x such that x ̸= −x. If S = {xℓ,−xℓ ∈ Xℓ}
for 1 ≤ ℓ ≤ 2k. Hence S is a maximal independent set and so β(Γsq(G)) = 2k+1. �

In the following theorem, we obtain the clique number of the Γsq(G)

Theorem 3.5. Let G be a finite abelian group, |G| = 2α × pα1

1 × . . . × pαr
r where

2 and p′is are distinct primes and α, αi ∈ Z
+ ∪ {0} for 1 ≤ i ≤ r and G ∼=

k
∏

i=1

Z2mi × Zp1
× . . .× Zpr

, α ∈ Z
+ and

k
∑

i=1

mi = α. Then the clique number
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ω(Γsq(G)) =































|G|+1
2 if |G| is odd;

1 if G ∼= Z
k
2 ;

2 if G ∼= Z
k−1
2 × Z4;

|G|
2k

if G ∼= Z
k
4 ;

|T |+
|G|

2k
−|T |

2 otherwise .

Proof. Case 1. If |G| is odd, then G = Od(G)and so deg(0) = |G| − 1 and
deg(x) = |G| − 2 for all x ∈ G \ {0}. Let S = {x or − x : x ∈ G}. Thus ⟨S⟩ is

maximal complete subgraph of Γsq(G). Hence ω(Γsq(G)) = |S| = |G|+1
2 .

Case 2. If G ∼= Z
k
2 , then Sq(G) = {0}k and so Γsq(G) ∼=

∪

|G|

K1. Hence S = {x}

for all x ∈ G is maximal complete subgraph of Γsq(G) and so ω(Γsq(G)) = 1.

Case 3. If G ∼= Z
k−1
2 × Z4,then |G| = 2k+1. By Remark 2.2, here we have

|Xℓ| = 2 and for 1 ≤ i ̸= j ≤ 2k, Xi ∩ Xj = ∅. Then ⟨Xℓ⟩ = K2 (or) 2K1 for
1 ≤ ℓ ≤ 2k. Hence S = {x, y ∈ Xℓ : x + y ̸= 0} is maximal complete subgraph of
Γsq(G) and so ω(Γsq(G)) = 2.

Case 4. If G ∼= Z
k
4 , then |G| = 22k. Let X1 = X(0,0,...,0) = Sq(G). By Re-

mark 2.2, for 1 ≤ i ̸= j ≤ 2k, Xi ∩Xj = ∅ and |Xℓ| =
|G|
2k

, for ℓ, 2 ≤ ℓ ≤ 2k . Then

⟨X1⟩ = K |G|

2k

in Γsq(G) and so for x ∈ Xℓ, then deg(x) = |G|
2k

− 2 for ℓ, 2 ≤ ℓ ≤ 2k.

Hence S = X1 is a maximal complete subgraph of Γsq(G) and so ω(Γsq(G)) = |G|
2k

.

Case 5. Since Γsq(G) is a disjoint union of 2k connected induced subraph of
⟨Xℓ⟩. From this, we get that ω(Γsq(G)) = max{ω(⟨X1⟩), ω(⟨X2⟩), . . . , ω(⟨X2k⟩)}.

In the remaining cases, G is of the form G = Z
q
2 × Z2βq+1 × . . .× Z2βk × Zp

α1
1

×
. . .×Zp

αr
r
, where k ≥ 0, q ≥ 0, and at least one αi ≥ 1 for 1 ≤ i ≤ r or at least one

βi ≥ 2 for 0 ≤ i ≤ k.

Let S be a maximal complete subgraph of Γsq(G). Since deg(x) ≥ deg(y) for

all x ∈ X1, y ∈ Xℓ, |Xℓ| =
|G|
2k

≥ 3 and Γsq(G) is a disjoint union of ⟨Xℓ⟩, for

1 ≤ ℓ ≤ 2k. Then S must in X1.

Let S ⊆ X1 = X(0,0,...,0). If T = {x ∈ X1 |2x = 0} ∪ {0}, then |T | = 2k−q and
⟨T ⟩ = K|T | in Γsq(G) and let T c = X1 \T. If for any x ∈ T c, then x is not adjacent
to −x and so deg(x) = |T c| − 2. Thus S = T ∪ {x or − x |x ∈ T c}. This S is a

maximal complete subgraph of ⟨X1⟩ and |S| = |T |+
|G|

2k
−|T |

2 . Hence S is a maximal

complete subgraph of Γsq(G) and so ω(Γsq(G)) = |T |+
|G|

2k
−|T |

2 .
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