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Abstract

Let R be a commutative ring with identity 1. Z(R) be its set of zero-divisors,
and if a € Z(R), then let ann(a) = {d € R|da = 0}. The annihilator graph R is the
(undirected) graph AGC(R) with vertices Z(R)* = Z(R) — {0}, and two distinct
vertices x and y are adjacent if and only if ann(z) # ann(y). In this article, we
study the graph AGC(R). For a commutative ring R, we show that AGC(R) is
connected with diameter at most two and with girth at most four provided that
AGC(R) has a cycle.
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0.1 INTRODUCTION

Let R be a commutative ring with identity 1, and let Z(R) be its set of zero
divisors. Probably the most attention has been to the zero divisor graph I'(R)
for a commutative ring R. The set of vertices of I'(R) is Z(R)*, and two distinct
vertices  and y are adjacent if and only if xy = 0. The zero-divisor graph was
introduced by David F. Anderson and Paul S. Livingston in [1]. In this article, we
introduce the annihilator graph AGC(R) for a commutative ring R. Let a € Z(R)
and let ann(a) = {d € R|da = 0}. The annihilator graph of R is the (undirected)
graph AGC(R) with vertices Z(R)* = Z(R) — {0}, and two distinct vertices x and
y are adjacent if and only if ann(z) # ann(y).

In the second section, we show that AGC(R) is connected with diameter at
most two. Also, we determine when AGC/(R) is a complete graph, or a star graph.

Let G be a (undirected) graph. We say that G is connected if there is a path
between any two distinct vertices. For vertices z and y of G, we define d(z,y) to be
the length of a shortest path from z to y ((d(x,z) = 0 and d(z,y) = oo if there is no
path). Then the diameter of G is diam(G) =sup{d(z,y)|z and y are vertices of G'}.
The girth of G, denoted by gr(G), is the length of a shortest cycle in G(gr(G) = o)
if G contains no cycles.

A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by K™ (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its
set of zero divisors, Nil(R) its set of nilpotent elements. U(R) its group of units.
T(R) its total quotient ring, and Min(R) its set of minimal prime ideals. We say
that R is reduced if Nil(R) = {0}.

0.2 BASIC PROPERTIES OF AGC(R)

In this section, we show that AGC(R) is connected with diameter at most two.
If AGC(R) # T'(R), we show that gr(AGC(R)) € {3,4}.

Theorem 0.2.1. [3, Theorem 8.13] Let R be a nonreduced commutative ring with
|INil(R)*| > 2, and let ' y(R) be the induced subgraph of I'(R) with vertices Nil(R)*.
Then T n(R) is complete if and only if Nil(R)* = 0.

Lemma 0.2.2. Let R be a nonreduced commutative ring with |Z(R)*| = |Nil(R)*| >
2. Then AGC(R) is disconnected if and only if Nil(R)* = {0}.

Proof. (=) Assume that AGC(R) is disconnected. Suppose Nil(R)? # 0. Let
r,y,2z € Z(R)* and assume that 2®> # 0. Since x is a zero divisor, then there
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is ay € Z(R)* such that xy = 0. Therefore y € ann(z) and = € ann(y) , but
x ¢ ann(x). Thus ann(x) # ann(y) and hence  — y is an edge of AGC(R), which
is a condradiction. Thus Nil(R)? = {0}.

(<) If Nil(R)? = {0}.

Case 1. Suppose |Z(R)*| = |Nil(R)*| = 2. Let a,b € Z(R)* such that ab = 0.
Since Nil(R)? = 0. Then ann(a) = ann(b). Hence a — b is not an edge in AGC(R).
Case 2. Suppose |Z(R)*| = |Nil(R)*| > 3. Let a,b,c € Z(R)*. Since Nil(R)? =0,
then I'y(R) is complete by Theorem 0.2.1. So that a — b — ¢ — a are adjacent
in I'(R) [Since|Z(R)*| = |Nil(R)*|]. Thus ann(a) = ann(b) = ann(c) and hence
a—0b,b—c,c— a are not adjacent in AGC(R).

In both cases AGC(R) is disconnected. O

The following is an example of disconnected graph.

Example 0.2.3. Let R = 2B Then T(R) = K3 and AGC(R) = K.

<z,y>2"

The following results are true except in the case of Theorem 0.2.2.

Lemma 0.2.4. If x — y is an edge of I'(R), then x — y is an edge of AGC(R). In
particular P is a path in T'(R), then P is also a path in AGC(R).

Proof. Given, z — y is an edge of AGC(R), then xy = 0. Therefore y € ann(z)
and x € ann(y). But x ¢ ann(z) and y ¢ ann(y). Therefore ann(x) # ann(y).
Hence x — y is an edge of AGC(R). Suppose x —y — z is a path in I'(R), then
r —y — z is also a path in AGC(R). O

Lemma 0.2.5. (1) If ann(x) C ann(y) or ann(y) C ann(x) for some distinct
z,y € Z(R)*, then x —y is an edge of AGC(R).

(2) If ann(z) € ann(y) or ann(y) € ann(zx) for some distinct x,y € Z(R)*, then
x —y is an edge of AGC(R).

(3) If drry(z,y) = 3 for some distinct x,y € Z(R)*, then x — y is an edge of
AGC(R).

Proof. (1) Since ann(z) C ann(y), then there exixts an element a € ann(y) , and
a ¢ ann(x) such that ann(x) # ann(y). Hence x — y is an edge of AGC(R).

(2) Suppose ann(z) € ann(y) or ann(y) € ann(x), then ann(z) # ann(y). Hence
xr —y is an edge of AGC(R).

(3) Let x and y be distinct vertices in Z(R)*. Given drry(z,y) = 3 . Let us
assume that © —a — b — y is a shortest path connecting z and y in I'(R) where
a,b are distinct vertices in Z(R)*. We have xa = 0,ab = 0,by = 0. Therefore

a € ann(z) and a ¢ ann(y). This implies that ann(x) # ann(y) and hence x — y is
an edge of AGC(R). O
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Theorem 0.2.6. Let R be a commutative ring. Suppose that dpg(x,y) = 3 for
some distinct x,y € Z(R)*. Then there exists a cycle of length 3 in AGC(R) and
at least one edge of C is an edge of T'(R).

Proof. Given dpg)(z,y) = 3 for some distinct x,y € Z(R)*. Then there exists a
path from 2 —a — b — y in T'(R), where a,b € Z(R)* and a # b. In this, ann(z) €
ann(y) and ann(y) € ann(x). Then x — y is an edge of AGC(R) and bz # 0. So
b ¢ ann(z) and x ¢ ann(b). Therefore ann(z) # ann(b). Then x — b is an edge of
AGC(R). Hence C : . —b—y —x is a cycle of length 3 in AGC(R) and at least one
edge of C' is an edge of I'(R). O

Theorem 0.2.7. Let R be a reduced commutative ring. Suppose that x — y is an
edge of AGC(R) that is not an edge of I'(R). Then there is a cycle of length 3 in
AGC(R) and at least one edge of C is an edge of I'(R).

Proof. Suppose that z — y is an edge of AGC(R) that is not an edge of I'(R).
Then ann(z) # ann(y) such that a € ann(z) and a ¢ ann(y). Then axz = 0. Since
R is reduced a # x and y is a zero divisor. Then there is b # a € Z(R)* such that
by = 0. Since R is reduced, so that b # y. Hence x — b is an edge of AGC(R), we
have © —y — b — z is a cycle of length 3 in AGC(R) and at least one edge of C' is
an edge of I'(R). O

Theorem 0.2.8. If z —y is not an edge of AGC(R) for some distinct x,y € Z(R)*,
then there is a w € Z(R)* — {x,y} such that x —w —y is a path in T'(R) and hence
T —w —y is also a path in AGC(R).

Proof. Given, x — y is not an edge of AGC(R) for some distinct z,y € Z(R)*.
Therefore ann(z) = ann(y). Then there exists an element w € ann(z) = ann(y)
such that zw = yw = 0. We conclude that © — w — y is a path in I'(R). Hence by
Lemma 0.2.4 x — w — y is also a path in AGC(R). O

Theorem 0.2.9. Let R be a commutative ring with |Z(R)|* > 2. Then AGC(R) is
connected and diam(AGC(R)) < 2.

Proof. Case 1.If |Z(R)*| = 2. Let 2,y € Z(R)*. Then zy = 0. Hence z — y is an
edge of T'(R). By Lemma 0.2.4 z — y is an edge of AGC(R).

Case 2. If |Z(R)*| > 2. Let z,y,z € Z(R)*. Suppose zy # 0, using Lemma 0.2.4,
we get the result. a

0.3 When AGC(R) = T'(R)?

Theorem 0.3.1. [1,Theorem 2.5] Let R be a commutative ring. Then there is a
vertex of I'(R) which is adjacent to every other vertez if and only if either R = Zox A
where A is an integral domain, or Z(R) is an annihilator ideal (and hence is prime).
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Theorem 0.3.2. Let R be a commutative ring with identity 1. Then there is a
vertex x € Z(R)* such that x is adjacent to all vertices in AGC(R) and hence
AGC(R) =T(R) if and only if R = Zy x A where A is an integral domain.

Proof. (=-). Since AGC(R) =T'(R), using Theorem 0.3.1 we get R = Z, x A.
(«<). Given, R = Zy x A where A is an integral domain. Using Theorem 0.3.1,
there is a vertex which is adjacent to every other vertex in I'(R). Let z € Z(R)*
such that x is adjacent to all vertices of I'(R). Clearly ann(z) = Z(R) — {z} for
some x € Z(R)*, then x is adjacent to every other vertex. Thus ann(y) = {0,z}
for every y — {x} € Z(R)*. Therefore ann(y) = ann(z) for every z € Z(R)* — {z}.
Hence no two elements in Z(R)* — {z} are not adjacent in AGC(R) and hence
AGC(R) =T(R).

O

Theorem 0.3.3. [4, Theorem 2.8] Let R be a commutative ring. Then diam(I'(R)) =
2 if and only if either (a) R is reduced with exactly two minimal primes and at least
three nonzero divisors, or (b) Z(R) is an ideal whose square is not {0} and each
pair of distinct zero divisors has a nonzero annihilator.

Theorem 0.3.4. [3, Theorem 3.2] Let R be a reduced commutative ring that is not
an integral domain, and let z € Z(R)*. Then:

(a) anng(z) = anng (2™) for each positive integer n > 2;

(b) If c+ z € Z(R) for some ¢ € anng () \ {0}, then anng (z + ¢) is properly
contained in anng (z) (i.e.,anng(c+ z) C anng(2)). In particular, if Z(R) is
an ideal of R and ¢ € anng(z) \ {0}, then anng (z + ¢) is properly contained in
anng (2).

Theorem 0.3.5. Let R be a reduced commutative ring that is not an integral do-
main. Then the following statements are equivalent.

(a) AGC(R) is complete;

(b) T'(R) is complete;

(c) R is ring isomorphic to Zo X Zs.

Proof. (a) = (b). Let b € Z(R)*. Suppose that b* # a. Since ann(b) = ann(b?),
So that b — b* is not an edge of AGC(R), a condradiction. Thus b* = b for each
b e Z(R)*. Let x,y be two distinct elements in Z(R)* . To prove z — y is an edge
of T'(R). Suppose that xy # 0. Since x — y is an edge of AGC(R), we have xy # 0.
Now, ann(z(zy)) = ann(z*y) = ann(zy). Thus zy — x is not an edge of AGC(R),
a condradiction. Hence zy = 0 and = — y is an edge of I'(R). (b) = (c) It follows
from Theorem 0.3.3.

(¢) = (a) Given, R = Zy X Zs, which is complete. Hence AGC(R) is complete. O

Theorem 0.3.6. Let R be a reduced commutative ring that is not an integral domain

and assume that Z(R) is an ideal of R. Then AGC(R) # I'(R) and gr(AGC(R)) =

3.
Page No : 2541



Proof. Let z € Z(R)*, a € ann(z) — {0}, and h € ann(a + z) — {0}. Then
h € ann(a + z) C ann(z) by Theorem 0.3.4 and thus ha = 0, since a® # 0, we have
h # a, and hence h+2z # a+z, since {h,a} C ann(z) and z* # 0, we have (h+z) and
(a+z) are non zero distinct elements in Z(R)*. Since (h+2)(a+2z) = 2% # 0, we have
(h+2z)— (a+ z) is not an edge of T'(R). Since a® # 0 and h* # 0, so (h+2) — (a+ 2)
is an edge of AGC(R). Thus AGC(R) # I'(R) and h —a — (h+ z) — h is a cycle of
length 3 in AGC(R) and gr(AGC(R)) = 3. O

Theorem 0.3.7. Let R be a reduced commutative ring with |Min(R)| > 3(possibly
Min(R)is infinite). Then AGC(R) # I'(R) and gr(AGC(R)) = 3.

Proof. If Z(R) is an ideal of R, then AGC(R) # I'(R) by Theorem 0.3.6. Hence
assume that Z(R) is not an ideal of R. Since |Min(R)| > 3, we have diam(T'(R)) = 3
by Theorem 0.3.3 and by Theorem 0.2.9 AGC(R) # I'(R). Since R is reduced and
AGC(R) # I'(R), we have gr(AGC(R)) = 3 by Theorem 0.2.7. O

Theorem 0.3.8. Let R be a reduced commutative ring that is not an integral do-
main. Then AGC(R) =T'(R) if and only if |[Min(R)| = 2.

Proof. Assume that AGC(R) =I'(R). Since R is reduced commutative ring that
is not an integral domain, |Min(R)| = 2 by Theorem 0.3.7. Conversely, assume
that |[Min(R)| = 2. Let p;,p, minimal prime ideal of R. Since R is reduced,
we have Z(R) = p; Upy and py Npy = {0}. Let x,y € Z(R)*. Assume that
x,y € p1. Since p; N pe = {0}, neither € py nor y € p,, and thus zy # 0. Since
pipe € p1 N py = {0}, it follows that ann(x) = ann(y) = ps. Thus z — y is not
an edge of AGC(R). Similarly if z,y € py, then x — y is not an edge of AGC(R).
Hence each edge of AGC(R) is an edge of I'(R), and AGC(R) =T'(R). O

Theorem 0.3.9. /2, Theorem 2.2] The following statement are equivalent for a
reduced commutative ring R.

(1) gr(T(R)) = 4.

(2) T(R) = Fy x Fy, where each F; is a field with |F;| > 3.

(3) I'(R) = Ky, with m,n > 2.

Theorem 0.3.10. Let R be a reduced commutative ring. Then the following state-
ments are equivalent:

(1) gr(AGC(R)) = 4;

(2) AGC(R) =T'(R) and gr(I'(R)) = 4;

(3) gr(I(R)) = 4;

(4) T(R) is ring -isomorphic to Fy x Fy, where each F; is a field with |F;| > 3;

(5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct
elements;

6) I'(R) = Ky, with m,n > 2;

7) AGC(R) = K, with m,n > 2.

o~~~
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Proof. (1) = (2). Since gr(AGC(R)) = 4. AGC(R) = I'(R) by Theorem 0.2.7,
and thus gr(I'(R)) = 4. (2) = (3). Assume that AGC(R) = I'(R) and gr(I'(R)) =
4. Thus gr(I(R)) = 4. (3) & (4) < (5) & (6) are clear by Theorem 0.3.9.
(6) = (7). Since (6) implies |Min(R)| = 2 by Theorem 0.3.9, we conclude that
AGC(R) =T'(R) by Theorem 0.3.8, and thus gr(AGC(R)) =T'(R) =4. (7) = (1).
Since AGC(R) is a complete bipartite and m,n > 2. Clearly gr(AGC(R)) =4 O

Theorem 0.3.11. /2, Theorem 2.4] The following statement are equivalent for a
reduced commutative ring R.

(1) gr(T(R)) = oc.

(2) T(R) = Zy x F, where each F is a field .

(3) I'(R) = K, for some n > 1.

Theorem 0.3.12. Let R be a reduced commutative ring. Then the following state-
ments are equivalent:

(1) gr(AGC(R)) = oo;

(2) AGC(R) =T(R) and gr(I'(R)) = ooy

6) ['(R) = Ky, withn > 1;
7) AGC(R) = Ky, withn > 1.

o~~~

Proof. (1) = (2). Since gr(AGC(R) = oo, AGC(R) = I'(R) by Theorem 0.2.7,
and thus gr(AGC(R)) = co0. (2) = (3). Given, AGC(R) = I'(R) and ¢gr(I'(R)) =
o0o. Thus gr(I'(R)) = c0. (3) & (4) & (5) < (6) are clear by Theorem 0.3.11.
(6) = (7). Since (6) implies |[Min(R) = 2| by Theorem 0.3.11, we conclude that
AGC(R) =T'(R) by Theorem 0.3.8 and thus gr(AGC(R)) = gr(I'(R)) = co. (7) =
(1) Since AGC(R) is a star graph. Thus gr(AGC(R)) = oo . O
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