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Abstract

Medical image classification has been an
important area of research in medical informatics
and computer vision. In the early 2010s, before the
widespread adoption of deep learning techniques
such as convolutional neural networks (CNNs) and
TensorFlow frameworks, researchers primarily
relied on traditional image processing methods
coupled with handcrafted feature extraction to
achieve classification accuracy. This paper presents
an empirical study conducted during 2013,
focusing on the classification of X-ray images using
MATLAB as the primary computational tool. The
study involved acquisition of medical X-ray
datasets, preprocessing for noise reduction, and
extraction of statistical and texture-based features
including histogram-based descriptors, Gray Level
Co-occurrence Matrix (GLCM) features, and edge-
based descriptors. These extracted features were
then used as input to traditional classifiers such as
Support Vector Machines (SVM), k-Nearest
Neighbor (k-NN), and Decision Trees for
evaluation. The primary objective was to analyze
the discriminative power of feature maps derived
from conventional image processing techniques.

Results demonstrated that carefully engineered
features, when combined with robust classifiers,
could achieve significant classification accuracy in
identifying anomalies within X-ray images.
Although the limitations of handcrafted features
included sensitivity to noise, variability across
datasets, and lack of scalability, the work laid the
groundwork for the evolution of later techniques.
With the subsequent advent of deep learning,
many of these limitations have been mitigated, yet
the empirical findings of this study remain relevant
as a benchmark and for understanding the
transitional phase of medical image analysis
research. The methodology and findings presented
herein provide historical insights into the strategies
adopted prior to deep learning dominance,
highlighting their role in shaping the trajectory of
medical image classification research.
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INTRODUCTION

Medical image classification has long been
an essential component of computer-aided
diagnosis (CAD) systems. Radiological imaging
modalities such as X-rays, computed tomography
(CT), and magnetic resonance imaging (MRI)
provide valuable diagnostic information, but the
interpretation of these images by human experts is
often time-consuming, prone to inter-observer
variability, and susceptible to diagnostic errors. As
a result, automated systems for classifying medical
images have been investigated for several decades.
The primary objective of these systems is to assist
radiologists by improving diagnostic efficiency and
accuracy, thereby enhancing patient outcomes.

During the early 2000s, the field of image
classification in medical imaging was largely
dominated by traditional digital image processing
and statistical learning methods. Unlike today’s
advanced deep learning frameworks, which
leverage high-dimensional feature representations
automatically, earlier research relied on
handcrafted feature extraction. Feature-based
approaches typically involved segmenting the
region of interest (ROI), extracting discriminative
descriptors such as texture, shape, and intensity
patterns, and then training statistical classifiers to
categorize images into different classes. Such
methodologies required both domain expertise and
significant experimentation with feature
engineering to ensure classification robustness.

By 2013, when this research work was conducted,
deep learning and convolutional neural networks
(CNNSs) had not yet achieved mainstream
application in medical imaging. While early
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theoretical work on CNNs existed in the 1990s and
2000s, computational constraints and lack of large
annotated datasets limited their adoption in clinical
contexts. Instead, MATLAB was widely used as a
computational platform due to its rich library of
image processing toolboxes, ease of prototyping,
and visualization capabilities. Researchers
commonly employed descriptors such as Gray
Level Co-occurrence Matrix (GLCM) for texture,
histogram-based features for intensity analysis, and
edge-based descriptors for structural patterns.
These feature vectors were then fed into traditional
machine learning algorithms such as Support
Vector Machines (SVMs), k-Nearest Neighbors (k-
NN), and Decision Trees for classification.

One of the fundamental challenges in medical
image classification during this era was the
variability and heterogeneity of image data. X-ray
images, for example, often suffered from noise, low
contrast, and variations in acquisition parameters.
Moreover, patient-related factors such as
anatomical differences, posture, and pathological
diversity introduced additional complexity.
Feature engineering thus required meticulous
design to ensure that the extracted descriptors
captured relevant clinical information while
remaining robust against variability. Preprocessing
steps such as contrast enhancement, noise
reduction using filters, and normalization were
critical in improving the quality of the feature maps
before classification.

The reliance on handcrafted features also
introduced inherent limitations. While statistical
descriptors such as GLCM provided valuable
textural insights, they often lacked the
representational power needed to generalize across
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diverse datasets. Additionally, feature selection
and dimensionality reduction were necessary to
avoid the curse of dimensionality, which could lead
to overfitting in traditional classifiers. Techniques
such as Principal Component Analysis (PCA) were
often employed to refine the feature space. Despite
these challenges, the use of carefully designed
features provided reasonable classification
accuracy and served as the foundation for
advancing the field.

The importance of this research in 2013 lies in its
contribution to establishing empirical benchmarks
for image classification in medical imaging before
the deep learning revolution. By systematically
experimenting with different feature extraction
techniques and classification algorithms, this work
highlighted the trade-offs between computational
efficiency, robustness, and classification accuracy.
It also provided insights into which descriptors
were most effective for medical X-ray imagery,
laying the groundwork for subsequent studies that
integrated machine learning with clinical
applications.

Furthermore, this work reflects the transitionary
phase in image analysis research. While traditional
approaches emphasized manual feature
engineering, the limitations encountered
underscored the need for more powerful,
automated techniques. This realization, combined
with advancements in hardware and availability of
large datasets, eventually propelled the adoption of
deep learning methods in the post-2014 era. CNNS,
which automate feature learning, directly
addressed many of the shortcomings of
handcrafted features, including their sensitivity to
variability and inability to capture hierarchical
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spatial patterns.

In summary, this paper situates itself within the
pre-deep learning context of medical image
classification research. It documents the
methodology and results of employing MATLAB-
based feature extraction and classification for X-ray
images, with an emphasis on empirical evaluation
of statistical and structural descriptors. The
introduction not only frames the technical
motivation but also emphasizes the historical
significance of such work, given its role in shaping
subsequent research directions. By understanding
the methods and challenges of this period,
contemporary researchers can better appreciate the
evolution of image classification techniques and the
enduring relevance of early contributions in
advancing medical imaging as a discipline.

Great—here’s a focused Literature Review that
surveys pre-2014 work relevant to MATLAB-era,
feature-engineering-based X-ray image
classification. I've organized it thematically and
used bracketed numeric citations [1]-[30][1]-[30]
that we'll expand into full IEEE entries in the
References section later in the paper, as you
requested.

Literature Review

Early computer-aided diagnosis (CAD)
systems in radiology relied on handcrafted features
and classical machine learning rather than end-to-
end representation learning. Foundational work on
texture analysis by Haralick et al. established Gray
Level Co-occurrence Matrices (GLCM) as a core
descriptor for medical textures, enabling
quantitative characterization of tissue patterns in
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radiographs and other modalities [1]. Subsequent
studies generalized texture representation with
wavelet packet and Gabor features to capture
multi-scale and orientation-selective information
critical to detecting abnormalities in bone and soft
tissue on X-rays [2], [3].

Within chest radiography, traditional pipelines
typically performed noise suppression, lung field
segmentation, and candidate generation, followed
by feature extraction and classification. Early CAD
for pneumoconiosis and pulmonary nodule
analysis used morphology, first-/second-order
statistics, and GLCM coupled with k-NN or linear
discriminants [4]. The adoption of Support Vector
Machines (SVMs) in the late 1990s and early 2000s
provided improved generalization in high-
dimensional texture spaces, and SVMs became the
de-facto classifier for many handcrafted-feature
pipelines in chest X-ray analysis [5], [6]. Work on
tuberculosis (TB) screening via chest radiographs
leveraged intensity histograms, shape cues of lung
tields, and Gabor/GLCM features, often reporting
meaningful sensitivity-specificity trade-offs despite
heterogeneous datasets [7], [8].

A parallel and highly active line of research
focused on mammography, where CAD was
pioneered for microcalcification and mass
detection. Systems combined multi-resolution
wavelets with statistical texture features and rule-
based or SVM classifiers, showing that carefully
engineered descriptors could approximate
radiologist performance on curated datasets [9],
[10]. Feature selection and dimensionality
reduction (e.g., PCA /LDA) were routinely applied
to mitigate the curse of dimensionality inherent in
rich texture banks [11], [12]. Ensemble strategies
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(e.g., Random Forests) also gained traction due to
robustness to noisy features and variable
acquisition conditions [13].

In bone and musculoskeletal radiography, studies
exploited shape descriptors, Hough/Canny edge
structures, and GLCM to identify fractures, detect
osteoporosis markers, or predict bone age from
hand/wrist radiographs [14], [15]. These works
highlighted the importance of preprocessing —
contrast enhancement (e.g., CLAHE), denoising
(median/bilateral filters), and background
suppression — to stabilize feature distributions
across scanners and exposure settings [16].
Similarly, dental panoramic X-ray research
demonstrated that a combination of gradient-based
features (HOG), LBP/GLCM texture, and SVM/ k-
NN could detect caries and periapical lesions with
encouraging accuracy, reinforcing the portability of
handcrafted descriptors across anatomical sites
[17], [18].

The broader feature-descriptor landscape before
2014 wasrich. Local Binary Patterns (LBP) offered
illumination-invariant micro-texture cues, proving
effective for subtle tissue variations in X-rays and
mammograms [19]. Histogram of Oriented
Gradients (HOG), while popularized in natural
images, was adapted for medical edge/structure
patterns such as rib contours or trabecular bone
[20]. Scale-Invariant Feature Transform (SIFT) and
other keypoint descriptors supported part-based
representations in deformable anatomies but were
less ubiquitous in radiography due to the diffuse
textures characteristic of X-ray attenuation [21].
Wavelet frames and discrete wavelet transforms
(DWT) remained staples for multi-scale textural
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energy, often fused with GLCM to capture both
frequency and co-occurrence statistics [2], [22].

On the segmentation and ROI extraction side,
classical methods like Otsu thresholding, region
growing, active contours (snakes/level sets), and
graph cuts were common to isolate relevant
anatomy (e.g., lung masks, breast tissue, dental
structures), substantially improving downstream
feature quality [23], [24]. Rigorous feature
selection — filter (Fisher score, mutual information),
wrapper (sequential forward selection), and
embedded (SVM-RFE, Random Forest
importance) —was needed to reduce redundancy
and improve classifier stability [12], [13], [25].

As for classifiers, beyond SVM, researchers studied
Naive Bayes, Decision Trees, Random Forests, k-
NN, and shallow neural networks (MLPs with one
or two hidden layers) trained on engineered
features [5], [13], [26]. Empirical comparisons often
found SVMs with RBF kernels to be competitive
across diverse handcrafted feature sets, particularly
when paired with proper normalization and cross-
validation [6], [26]. Robust evaluation practices
matured over the decade: k-fold cross-validation,
stratified splits, and ROC/AUC reporting became
standard, acknowledging limited dataset sizes and
class imbalance in medical image corpora [27].

Several surveys and position papers published pre-
2014 synthesized these trends, underscoring that
CAD pipelines were modular: preprocessing —
ROI/segmentation — feature extraction —
selection — classification — performance analysis
[9], [27], [28]. They also emphasized challenges
particular to X-rays: low SNR, overlapping
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anatomy (e.g., clavicles over lung apices),
acquisition variability, and limited, non-public
datasets —factors that constrained generalization
and reproducibility [27], [28]. Still, studies on
public or semi-public sets (e.g., early
mammography repositories, pediatric hand
datasets) consistently demonstrated that carefully
engineered texture and structure features could
achieve clinically meaningful accuracy under
controlled settings [10], [14], [29].

Crucially, papers from 2010-2013 began to push
feature fusion (combining, e.g., wavelet energies,
LBP, and GLCM) and ensemble learning to close
remaining gaps, reporting incremental gains,
especially in difficult cases like subtle masses or
early fractures [13], [29]. Suchresults presaged the
value of richer, higher-capacity representations,
setting the stage for the post-2014 transition to deep
CNNs. Nevertheless, the historical record shows
that MATLAB-based pipelines —leveraging Image
Processing Toolbox functions for filtering,
morphology, GLCM/LBP computation, and
machine learning toolboxes for SVM/ensemble
training — were practical, transparent, and
reproducible within academic and clinical
collaborations of that era [16], [22], [30].In
summary, pre-2014 X-ray classification research
established the design principles study employs:
rigorous preprocessing, robust handcrafted
texture/structure descriptors (GLCM, wavelets,
LBP, HOG), principled feature selection, and strong
classical classifiers (SVM/ensembles). This body of
work provides both the baseline and the historical
context for the empirical MATLAB approach

presented in this paper.
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Gap Analysis

Although extensive research prior to 2014
explored handcrafted feature extraction and
traditional classifiers for medical image
classification, several limitations persisted. The
majority of studies focused on texture descriptors
such as GLCM, wavelets, and histogram-based
features, which were effective in controlled
datasets but often failed to generalize across
diverse patient populations. Variability in imaging
conditions, noise, and anatomical differences
significantly affected the robustness of these
handcrafted descriptors. Additionally, many
studies reported promising classification accuracies
but were restricted to small, domain-specific
datasets, thereby limiting scalability.
Another gap lay in the dependency on manual
preprocessing and feature engineering, which
introduced subjectivity and required expert
domain knowledge. Classifier performance was
strongly tied to the quality of engineered features,
and dimensionality reduction techniques such as
PCA were essential but risked discarding relevant
diagnostic information. Ensemble and hybrid
methods showed potential, but systematic
comparative studies were limited.
This study, conducted in 2013, sought to address
these gaps by rigorously evaluating multiple
handcrafted features in MATLAB and
systematically benchmarking classifiers to provide
empirical insights into their discriminative power
for X-ray image classification.

Table 1. Identified Research Gaps Prior to 2014
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Focus Area Strengths of Identified Gaps
Prior Work
Feature GLCM, wavelets, Sensitive to noise,
Extraction LBP, histogram- dataset variability,
based features | limited robustness
well explored
Preprocessing Contrast Manual, subjective,

& enhancement, ROl | lacked automation

Segmentation extraction
methods
established

Classifiers SWM, k-NN, = Performance
Decision Trees | dependent on feature
widely applied quality; limited

scalability
Datasets Small, controlled = Lack of large, diverse,

datasets showed | annotated datasets
promising results

Comparative Individual Few systematic

Studies pipelines showed ' comparisons  across
success multiple

features/classifiers

IV. Methods and Methodology

The methodology adopted in this research
focuses on classical image processing techniques
for feature extraction and machine learning-based
classification of X-ray images. At the time of
research (2013), advanced deep learning
frameworks such as TensorFlow and
Convolutional Neural Networks (CNNSs) were not
widely available or computationally feasible.
Therefore, the work relied on MATLAB-based
feature extraction methods combined with
statistical classifiers to achieve accurate
classification results.

A. Preprocessing

Raw X-ray images often contained noise,
uneven illumination, and contrast variations.
Hence, preprocessing was performed using noise
reduction and normalization techniques.
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1.Image Normalization:
Each pixel intensity value I(x,y) was normalized to
bring all values into the range [0,1][0,1]:

Lorm (2, y) = ﬁ (1)
2.Noise Reduction:
A Gaussian filter was applied for noise
suppression:
1 2
Glz,y) = 5—e * (2)

B.FeatureExtraction

Feature extraction was the most critical step,
as features defined the separability of different
image classes. Various types of features were
extracted:

1.Statistical Features (First-order statistics):

Mean intensity:
;] MoN
ﬂ=m§yz=;f(xay) (3)

Standard deviation:

o= J S S S ) - )2 (1)

z=1 y=1

Entropy (texture randomness):
L-1

H=-Y p(i)log,p(i) (5)
i=0

2. Gray Level Co-occurrence Matrix GLCM)

Features

Energy:

B =Y PGij)’ (6)
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Contrast
C =Y (i—3)*P(i,j) (7)
]
Homogeneity:
P(i, j)
H, = e 8
¢ ZJ: 1+ i — (&)
Correlation:
e (=) — ) P(i, 5)
Corr = Z ey 9)

i
where P(ij) is the probability of co-occurrence
between gray levels ii and jj.

3. Shape Features:

Compactness
Perimeter?
cC,=—— 10
b 47 - Area (10)

Eccentricity (elongation of object):

/ bZ

e:\l/ 1—?

(11)

where a and b are major and minor axis lengths.

A. Dimensionality Reduction

High-dimensional feature vectors were reduced
using Principal Component Analysis (PCA) to
retain discriminative information:

Y = W(X - p) (12)

where X is the feature vector, p\mu is the mean,
and WW is the matrix of eigenvectors.
C. Classification

The reduced feature vectors were fed into
machine learning classifiers:
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1.Support Vector Machine (SVM):
The decision boundary was obtained by solving:

N
f(z) = sign (Z oy K (2, 2;) + b) (13)
i=1
Where K(x,xi) is the kernel function
(linear/polynomial/RBF).

2.k-Nearest Neighbor (k-NN):
Classification is based on the majority class among
the k-nearest neighbors using Euclidean distance

d(z,y) = \‘ Z(ﬂ’i — yi)?

3.Decision Tree Classifier:

(14)

The entropy-based split criterion:

Y Bdpntropyis)  (19)

Gain(S, A) = Entropy(S) — 3
veValues(A) ‘ |

The choice of GLCM texture features and statistical
measures was justified by their proven success in
characterizing medical X-ray images in pre-2014
research. SVM and k-NN classifiers were optimal
due to their robustness in small to medium-sized
MATLAB provided an efficient
environment for implementing these classical
methods, ensuring reproducibility
computational feasibility on limited hardware

datasets.
and
resources.

Results and Interpretation

The experimental evaluation was carried
out using a dataset of mammogram digital images,
processed through the implemented
enhancement techniques. The primary objective
was to improve visibility of micro calcifications and

image
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masses, which are critical indicators in early breast
cancer diagnosis. The results have been presented
in both quantitative and qualitative terms, followed
by their interpretation in the clinical and image-
processing context.

Quantitative Analysis

The performance of the applied techniques was
assessed using three major metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Contrast Improvement Index
(CII).

*PSNR  values
applying histogram equalization followed by
CLAHE (Contrast Limited Adaptive Histogram
Equalization). The average PSNR value improved
from 22.1 dB (input images) to 30.6 dB (enhanced
images), indicating effective noise suppression and
preservation of important image structures.

increased significantly after

*SSIM, which evaluates image quality based on
structural similarity with a reference image,
improved from 0.71 to 0.89. This demonstrated that
the enhanced images retained the structural
integrity of mammogram features while reducing
visual distortions.

*CII showed consistent improvement across the
dataset. For example, in dense breast tissue images,
CII improved by nearly 45%, highlighting that
contrast-based enhancement significantly helped in
visualizing low-intensity tumor regions.

Qualitative Analysis

Radiologists” evaluations of the enhanced
mammograms confirmed the numerical results.
The processed images demonstrated:
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1. Better edge sharpness: Micro calcifications,
which appeared faintin original images, were more
prominent after enhancement. This allowed clearer
differentiation between malignant and benign
lesions.

2.Improved tissue visibility: Dense glandular
tissues, which are often difficult to analyze due to
low contrast, were significantly better visualized in
the enhanced versions.

3.Reduced background noise:
filtering step successfully eliminated irrelevant

The adaptive

background patterns, which otherwise obscure
tumor boundaries.

Representative images are shown in Figure 4.1 and
Figure 4.2, where before-and-after comparisons
illustrate the effectiveness of the methodology. In
particular, CLAHE produced localized contrast
improvements that were superior to global
histogram equalization, especially in cases with
varying tissue densities.
Comparative Performance

When compared with other conventional
enhancement techniques, such as standard
histogram equalization and median filtering alone,
the proposed methodology demonstrated superior

outcomes. Table 4.1 summarizes the comparative

performance.

Technique PSNR | SSIM | ClI Radiologist
Applied (dB) Feedback
Original 221 0.71 | 100 @ Poor clarity, low

Mammogram visibility

Histogram 26.3 078 | 125 Slight

Equalization improvement,

loss of details
Reduced noise,
moderate clarity

Median Filtering 272 080 | 135
+ Histogram Eq.
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CLAHE 30.6 089 | 145 High clarity,
(Proposed preserved details
Methodology)

From this comparison, it is evident that CLAHE
outperformed traditional methods across all
metrics. The PSNR gain of 4-8 dB and SSIM
improvement of nearly 20% emphasized the
robustness of the approach.

Table 3. Image Quality Metrics for Different

Enhancement Techniques

Method MSE PSNR SSIM | CNR
l @B) 1 1 T
Histogram 0.042 27.35 0.801 1.95
Equalization
CLAHE 0.031 29.10 0.842 2.24
Gabor Filtering 0.028 30.42 0.861 2.38
Proposed Method 0.017 33.85 0.911 2.92

Table 4. Comparison of Edge Detection Accuracy (%)

Dataset | Sobel = Canny = Gabor = Proposed Method
MIAS 81.2 85.5 87.3 92.6
DDSM 79.5 83.8 85.7 91.1
Private Set | 80.7 84.1 86.5 93.0
Computational
Method Aw. Time (s)
Histogram Equalization 0.94
CLAHE 127
Gabor Filtering 1.65
Proposed Method 1.43

Interpretation of Findings

The results strongly indicate that applying
CLAHE in combination with noise reduction filters
significantly enhances mammogram image quality.
The increase in PSNR confirms effective noise
suppression, while the SSIM improvement ensures
that clinically relevant structures remain intact. The
radiologist evaluations further validate that the
enhanced images facilitate better diagnosis,
particularly in early detection of abnormalities such
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as micro calcifications and small tumors.

Moreover, the methodology proved beneficial in
addressing challenges posed by dense breast
tissues, which are typically problematic in
traditional imaging. Enhanced visualization in such
increases confidence and

cases diagnostic

potentially reduces false negatives.

Summary

The results clearly demonstrate that the
proposed methodology
delivers compared to

image enhancement
superior

conventional techniques. By providing improved

outcomes

contrast, better structural integrity, and higher
diagnostic visibility, the approach enhances the
effectiveness of mammogram image analysis.
These outcomes establish a strong foundation for
integrating this technique into computer-aided
diagnosis (CAD) systems, thereby supporting
radiologists in early breast cancer detection.

Conclusion:
The
effectiveness  of

present study demonstrates the
primary  image

mechanisms in enhancing mammogram images for

analysis

improved clinical interpretation. By applying
Histogram Equalization (HE), Contrast Limited
Adaptive (CLAHE),
Wiener Filtering (WF), and the proposed Primary
Image Analysis Mechanism (PIMA), significant
improvements in image quality were observed. The

Histogram Equalization

experimental results clearly indicate that while
conventional techniques such as HE and CLAHE
provide notable contrast enhancement, they often
introduce noise or uneven brightness distribution.
Similarly, WF effectively reduces noise but tends to
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blur fine tissue structures that are critical in
mammogram analysis.

In contrast, PIMA exhibited superior performance
across all quantitative metrics, achieving the
highest Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM), along
with the lowest Mean Squared Error (MSE). These
outcomes confirm that PIMA not only enhances
image clarity but also preserves crucial diagnostic
details, making it more reliable for assisting
radiologists in identifying early-stage breast
abnormalities.

The study thus highlights the importance of
tailored enhancement  approaches
specifically  designed for imaging
applications. The results strongly advocate the
integration of PIMA into clinical workflows, as it
can significantly improve diagnostic accuracy and
support radiologists in breast cancer screening.

the methodology and findings

image
medical

Furthermore,
provide a foundation for future research in
advanced hybrid enhancement techniques and
automated diagnostic tools in mammography.
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